Set
说明:
- Set 接口的实现类的对象, 不能存放重复的元素, 可以添加一个null的元素
- Set 接口的实现类的对象, 存放数据是无序的(即添加的顺序和取出的顺序不一致)
- 取出的顺序虽然与添加的顺序不一致, 但是取出的顺序是固定的
- 遍历只能使用迭代器和增强for, 不能使用数组的方法(因为没有
get(index i)
方法)
HashSet
说明
可以存放null值, 但只能有一个
不能有重复对象
添加的顺序和取出的顺序不一致
public class HashSet<E>
extends AbstractSet<E>
implements Set<E>, Cloneable, java.io.Serializable
HashSet
底层是HashMap
// 底层是HashMap
public HashSet() {
map = new HashMap<>();
}
HashMap
的一些说明:通过无参构造函数初始化时, 第一次添加会进行扩容:
Node<K,V>[] tab; Node<K,V> p; int n, i; if ((tab = table) == null || (n = tab.length) == 0) n = (tab = resize()).length;
一般操作:
- 当添加一个元素时, 会通过
hash(key)
函数计算hash
值, 再通过&
运算代替取余运算得到索引值
hash = hash(key)
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
// 计算索引公式: i = (n - 1) & hash
通过索引值看该table是否有元素,
如果没有, 则直接加入
// p 代表 通过计算出的索引值得到的结点 if ((p = tab[i = (n - 1) & hash]) == null) tab[i] = newNode(hash, key, value, null);
如果有
, 则调用equals方法比较,如果key相同
, 则直接覆盖 (保证key唯一)else { Node<K,V> e; K k; if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k)))) // // 保留待被覆盖的结点的引用, 见最后一部分代码实现覆盖操作 e = p; // 覆盖的是value, 对key不做处理, 即在HashSet中, 不添加重复的key!
如果key不相同
, 则判断是否为树结点, (插入— 拉链法解决冲突)是
则红黑树插入else if (p instanceof TreeNode) e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
若不是
, 则遍历插入static final int TREEIFY_THRESHOLD = 8;
else { for (int binCount = 0; ; ++binCount) { // e 指向 p代表的链表 的 下一个结点 if ((e = p.next) == null) { // 如果下一个结点为空, 直接插入末尾即可 p.next = newNode(hash, key, value, null); // 相当于 binCount + 1 >= TREEIFY_THRESHOLD if (binCount >= TREEIFY_THRESHOLD - 1) treeifyBin(tab, hash); // 链表大于8, 是则转为红黑树 break; } // 如果在链表中遇到了key相同的, 则跳出循环, 最终通过 引用 e 来实现覆盖操作 if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k)))) break; p = e; // 即 p = e = p.next 遍历 } }
最后一部分代码
if (e != null) { // existing mapping for key V oldValue = e.value; if (!onlyIfAbsent || oldValue == null) e.value = value; // 只覆盖value afterNodeAccess(e); return oldValue; } } ++modCount; if (++size > threshold) resize(); afterNodeInsertion(evict); return null; }
PS: 当链表长度大于阈值(默认为 8)并且
HashMap
数组长度大于等于 64 的时候才会执行链表转红黑树的操作,否则就只是对数组扩容。参考HashMap
的treeifyBin()
方法
源码
public class HashSet<E>
extends AbstractSet<E>
implements Set<E>, Cloneable, java.io.Serializable
{
static final long serialVersionUID = -5024744406713321676L;
private transient HashMap<E,Object> map;
// 常量: 每个key共享的对象, 占位, 可以用来判断是否remove成功
private static final Object PRESENT = new Object();
public HashSet() {
map = new HashMap<>();
}
public HashSet(Collection<? extends E> c) {
map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));
addAll(c);
}
public HashSet(int initialCapacity, float loadFactor) {
map = new HashMap<>(initialCapacity, loadFactor);
}
public HashSet(int initialCapacity) {
map = new HashMap<>(initialCapacity);
}
HashSet(int initialCapacity, float loadFactor, boolean dummy) {
map = new LinkedHashMap<>(initialCapacity, loadFactor);
}
// 迭代器
public Iterator<E> iterator() {
return map.keySet().iterator();
}
// 实际数目
public int size() {
return map.size();
}
// 是否为空
public boolean isEmpty() {
return map.isEmpty();
}
// 是否包含该对象
public boolean contains(Object o) {
return map.containsKey(o);
}
// 添加元素: 返回boolean型,如果此 set 中尚未包含指定元素,则添加指定元素, 返回true;
// 如果此 set 已包含该元素,则返回 false。
// this.add --- Returns:true if this set did not already contain the specified element
// map.put --- Returns:previous value, or null if none
public boolean add(E e) {
return map.put(e, PRESENT)==null;
}
// 移除该对象
public boolean remove(Object o) {
return map.remove(o)==PRESENT;
}
// 清除
public void clear() {
map.clear();
}
// 克隆
@SuppressWarnings("unchecked")
public Object clone() {
try {
HashSet<E> newSet = (HashSet<E>) super.clone();
newSet.map = (HashMap<E, Object>) map.clone();
return newSet;
} catch (CloneNotSupportedException e) {
throw new InternalError(e);
}
}
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out any hidden serialization magic
s.defaultWriteObject();
// Write out HashMap capacity and load factor
s.writeInt(map.capacity());
s.writeFloat(map.loadFactor());
// Write out size
s.writeInt(map.size());
// Write out all elements in the proper order.
for (E e : map.keySet())
s.writeObject(e);
}
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in any hidden serialization magic
s.defaultReadObject();
// Read capacity and verify non-negative.
int capacity = s.readInt();
if (capacity < 0) {
throw new InvalidObjectException("Illegal capacity: " +
capacity);
}
// Read load factor and verify positive and non NaN.
float loadFactor = s.readFloat();
if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
throw new InvalidObjectException("Illegal load factor: " +
loadFactor);
}
// Read size and verify non-negative.
int size = s.readInt();
if (size < 0) {
throw new InvalidObjectException("Illegal size: " +
size);
}
// Set the capacity according to the size and load factor ensuring that
// the HashMap is at least 25% full but clamping to maximum capacity.
capacity = (int) Math.min(size * Math.min(1 / loadFactor, 4.0f),
HashMap.MAXIMUM_CAPACITY);
// Constructing the backing map will lazily create an array when the first element is
// added, so check it before construction. Call HashMap.tableSizeFor to compute the
// actual allocation size. Check Map.Entry[].class since it's the nearest public type to
// what is actually created.
SharedSecrets.getJavaOISAccess()
.checkArray(s, Map.Entry[].class, HashMap.tableSizeFor(capacity));
// Create backing HashMap
map = (((HashSet<?>)this) instanceof LinkedHashSet ?
new LinkedHashMap<E,Object>(capacity, loadFactor) :
new HashMap<E,Object>(capacity, loadFactor));
// Read in all elements in the proper order.
for (int i=0; i<size; i++) {
@SuppressWarnings("unchecked")
E e = (E) s.readObject();
map.put(e, PRESENT);
}
}
public Spliterator<E> spliterator() {
return new HashMap.KeySpliterator<E,Object>(map, 0, -1, 0, 0);
}
}
HashCode 与 equals
说明: 要保证两个对象相等, 则它们的hashCode()值
一定相等.
- 因为如果不重写
hashCode()方法
, 即使new 出来的对象的内容相同(即通过equals()
) , 那么再添加到HashSet集合
里时, 也会被当做两个不一样的对象. - 如果两个对象
hashCode()值
相等, 它们并不一定相等(说明起冲突了, 采用拉链法解决).
不重写
HashCode 与 equals
的add
()默认的 Object 的
HashCode 与 equals
public native int hashCode(); // 返回GC堆里的一个特殊值
public boolean equals(Object obj) { return (this == obj); // 判断是不是同一个对象引用 }
package com.Jungle;
import java.util.*;
public class HashTest {
public static void main(String[] args) {
Set<Employ> set = new HashSet<>();
set.add(new Employ("jungle", 18));
set.add(new Employ("james", 18));
set.add(new Employ("jungle", 18));
System.out.println(set);
}
static class Employ {
private String name;
private int age;
Employ(String name, int age) {
this.name = name;
this.age = age;
}
@Override
public String toString() {
return "Employ{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
}
}
输出:
[Employ{name='jungle', age=18}, Employ{name='james', age=18}, Employ{name='jungle', age=18}]
Process finished with exit code 0
重写
HashCode 与 equals
后add
package com.Jungle;
import java.util.*;
public class HashTest {
public static void main(String[] args) {
Set<Employ> set = new HashSet<>();
set.add(new Employ("jungle", 18));
set.add(new Employ("james", 18));
set.add(new Employ("jungle", 18));
System.out.println(set);
}
static class Employ {
private String name;
private int age;
Employ(String name, int age) {
this.name = name;
this.age = age;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Employ employ = (Employ) o;
return age == employ.age && Objects.equals(name, employ.name);
}
@Override
public int hashCode() {
return Objects.hash(name, age);
}
@Override
public String toString() {
return "Employ{" +
"name='" + name + '\'' +
", age=" + age +
'}';
}
}
}
输出:
[Employ{name='james', age=18}, Employ{name='jungle', age=18}]
Process finished with exit code 0
HashMap
和 HashSet
区别
LinkedHashSet
说明:
LinkedHashSet
加入的顺序和取出的顺序一致
LinkedHashSet
底层维护的是一个LinkedHashMap
(HashMap
的子类)
LinkedHashSet
底层结构(数组table+双向链表)在Node的基础上添加了before和after维护双向链表
static class Entry<K,V> extends HashMap.Node<K,V> { Entry<K,V> before, after; Entry(int hash, K key, V value, Node<K,V> next) { super(hash, key, value, next); --> Node() } }
TreeSet
说明: 无参构造是无序的; 有参构造可以指定排序规则.
TreeSet
底层是TreeMap
public class TreeSet<E> extends AbstractSet<E>
implements NavigableSet<E>, Cloneable, java.io.Serializable
构造函数:
public TreeSet() {
this(new TreeMap<E,Object>());
}
// 在初始化时可以添加比较器
public TreeSet(Comparator<? super E> comparator) {
this(new TreeMap<>(comparator));
}
Map
Map (源码在
HashMap
查找) 是一个双列集合(具有映射关系的数据), 即 key-value,
其中, key 不能重复, value 可以重复 (可以将key看做
Set
, value看做Colletion
).key可以为null, 但只能有一个; value可以多个null.
常用String类作为key
HashSet
其实就是 k-v 中, 将 value 用 常量 PRESENT 替换了; 而HashMap
中的 value 则是 保存变量; 就是说HashSet
只使用 了HashMap
的key.取key-value的集合:
- 一对k-v是放在
HashMap.Node
结点中的, 而为了方便遍历建立了entrySet
集合, 其中k, v 都只是引用
(地址一样).HashMap.Node
实现了Map.Entry
:static class Node<K,V> implements Map.Entry<K,V>
// HashMap.Node --> Map.Entry --> entrySet transient Set<Map.Entry<K,V>> entrySet; // final class EntrySet extends AbstractSet<Map.Entry<K,V>> ... public Set<Map.Entry<K,V>> entrySet() { Set<Map.Entry<K,V>> es; return (es = entrySet) == null ? (entrySet = new EntrySet()) : es; }
- 其中
Map.Entry
:
- K
getKey()
- V
getValue()
只取key的集合
transient Set<K> keySet; // final class KeySet extends AbstractSet<K> ... public Set<K> keySet() { Set<K> ks = keySet; if (ks == null) { ks = new KeySet(); keySet = ks; } return ks; }
只取value的集合
transient Collection<V> values; // final class Values extends AbstractCollection<V> ... public Collection<V> values() { Collection<V> vs = values; if (vs == null) { vs = new Values(); values = vs; } return vs; }
常用方法:
- put(k, v)
- remove(k)
- get(k)
- size(): 实际元素个数
- isEmpty()
- clear()
- containskey(k)
HashMap
参考链接:
找到大于等于initialCapacity的最小的2的幂(initialCapacity如果就是2的幂,则返回的还是这个数)
如果添加相同的
key
, 则会覆盖原来的key-val
, 等同于修改 (key
不会替换,但val
会替换)
// HashMap.Node 实现了 Map.Entry 接口
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
V value;
Node<K,V> next;
Node(int hash, K key, V value, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
}
public final K getKey() { return key; }
public final V getValue() { return value; }
public final String toString() { return key + "=" + value; }
public final int hashCode() {
return Objects.hashCode(key) ^ Objects.hashCode(value);
}
public final V setValue(V newValue) {
V oldValue = value;
value = newValue;
return oldValue;
}
public final boolean equals(Object o) {
if (o == this)
return true;
if (o instanceof Map.Entry) {
Map.Entry<?,?> e = (Map.Entry<?,?>)o;
if (Objects.equals(key, e.getKey()) &&
Objects.equals(value, e.getValue()))
return true;
}
return false;
}
}
// table 就是 HashMap 的一个 Node 数组
transient Node<K,V>[] table;
transient Set<Map.Entry<K,V>> entrySet;
transient int size;
transient int modCount;
int threshold;
final float loadFactor;
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
static final int MAXIMUM_CAPACITY = 1 << 30;
static final float DEFAULT_LOAD_FACTOR = 0.75f;
static final int TREEIFY_THRESHOLD = 8;
static final int UNTREEIFY_THRESHOLD = 6;
static final int MIN_TREEIFY_CAPACITY = 64;
// threshold: 找到大于等于initialCapacity的最小的2的幂给threshold
// 1->1/2->2/7->8/9->16/17->32 (initialCapacity->threshold)
// 第一次put的时候---resize时, 用threshold进行初始化
// newCap = threshold, newThr = threshold * 0.75
// 最后: threshold = newThr;
// Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
// 例如: 1->1/2->2/7->8/9->16/17->32 (initialCapacity->newCap)
// 例如: 1->1/2->1/7->6/9->12/17->24 (initialCapacity->threshold)
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
static final int tableSizeFor(int cap) {
int n = cap - 1;
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
public HashMap(Map<? extends K, ? extends V> m) {
this.loadFactor = DEFAULT_LOAD_FACTOR;
putMapEntries(m, false);
}
上面是一些基础源码
下方是一般使用
HashMap
时, 用到的构造方法
和Put
方法及其相关联的源码
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // DEFAULT_LOAD_FACTOR = 0.75f
}
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR); // DEFAULT_LOAD_FACTOR = 0.75f
}
重点方法: put
和 putVal
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
return new Node<>(hash, key, value, next);
}
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i; // 定义了辅助变量
// table 本质上是一个Node[]类型的数组, 初始时为null或者大小为0 就进行第一次扩容(一般是16个空间)
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length; // 1 通过构造函数初始化后, table 为 null, 进行第一次扩容 (一般n=16)
// i = (n - 1) & hash 计算索引位置
// p = tab[i = (n - 1) & hash] 通过索引使 p 指向 这个索引位置的对象
if ((p = tab[i = (n - 1) & hash]) == null) //(1) 如果 p 为 null (表示还未存放过元素)
// 保存的hash值会在后面的比较中, 若有冲突, 则插入链表 (拉链法解决冲突)
tab[i] = newNode(hash, key, value, null); // 直接插入
else { //(2) 如果 p 不为 null
Node<K,V> e; K k; // 需要辅助变量再创建比较好!
if (p.hash == hash && //(2.1) 如果 key 存在
// 准备加入的key 和 p 指向的key 是同一个对象 或者 相等("内容相同")
((k = p.key) == key || (key != null && key.equals(k))))
e = p; // 直接覆盖(见后面统一操作)
//(2.2) 如果 key 不存在
else if (p instanceof TreeNode) //(2.2.1) 如果 p 是树结点 (如果p是一颗红黑树)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); // 红黑树插入
else { //(2.2.2) 如果如果 p 不是 树结点, 即 是 链表
for (int binCount = 0; ; ++binCount) {
// 当前链表只有一个结点 或者 (没有相同的key则)走到链表尾
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null); // 直接加入 (尾插法)
// 添加结点后, 判断该链表是否达到8个结点
// 相当于: binCount+1 >= TREEIFY_THRESHOLD; TREEIFY_THRESHOLD==8.
if (binCount >= TREEIFY_THRESHOLD - 1)
// treeifyBin说明:
// 如果table数组长度小于64, 只扩容 resize()
// 如果table数组长度大于等于64, 进行树化
treeifyBin(tab, hash);
break;
}
// 在链表里也要判断key是否相同, 相同则break, 最后直接覆盖(见后面统一操作)
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k)))) // 同上
break;
p = e; // p = e = p.next 遍历插入
}
}
// 统一对 e = p 进行操作
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value; // 只对value进行操作(key已经存在时, 不对key进行操作---HashSet)
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
// 当大于阈值时就扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null; // 若 p 为 null, put后 返回 null 代表成功; 若 p 不为 null, 则返回 oldValue (见上);
}
treeifyBin
final void treeifyBin(Node<K,V>[] tab, int hash) {
int n, index; Node<K,V> e;
// 长度小于64
if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
resize(); // 数组扩容
// 长度大于等于64, 进行树化
else if ((e = tab[index = (n - 1) & hash]) != null) {
TreeNode<K,V> hd = null, tl = null;
do {
TreeNode<K,V> p = replacementTreeNode(e, null);
if (tl == null)
hd = p;
else {
p.prev = tl;
tl.next = p;
}
tl = p;
} while ((e = e.next) != null);
if ((tab[index] = hd) != null)
hd.treeify(tab);
}
}
TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
return new TreeNode<>(p.hash, p.key, p.value, next);
}
TreeNode
// HashMap.TreeNode
final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
TreeNode<K,V> parent; // red-black tree links
TreeNode<K,V> left;
TreeNode<K,V> right;
TreeNode<K,V> prev; // needed to unlink next upon deletion
boolean red;
TreeNode(int hash, K key, V val, Node<K,V> next) {
super(hash, key, val, next);
}
/**
* Returns root of tree containing this node.
*/
final TreeNode<K,V> root() {
for (TreeNode<K,V> r = this, p;;) {
if ((p = r.parent) == null)
return r;
r = p;
}
}
/**
* Ensures that the given root is the first node of its bin.
*/
static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
int n;
if (root != null && tab != null && (n = tab.length) > 0) {
int index = (n - 1) & root.hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
if (root != first) {
Node<K,V> rn;
tab[index] = root;
TreeNode<K,V> rp = root.prev;
if ((rn = root.next) != null)
((TreeNode<K,V>)rn).prev = rp;
if (rp != null)
rp.next = rn;
if (first != null)
first.prev = root;
root.next = first;
root.prev = null;
}
assert checkInvariants(root);
}
}
/**
* Finds the node starting at root p with the given hash and key.
* The kc argument caches comparableClassFor(key) upon first use
* comparing keys.
*/
final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
TreeNode<K,V> p = this;
do {
int ph, dir; K pk;
TreeNode<K,V> pl = p.left, pr = p.right, q;
if ((ph = p.hash) > h)
p = pl;
else if (ph < h)
p = pr;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if (pl == null)
p = pr;
else if (pr == null)
p = pl;
else if ((kc != null ||
(kc = comparableClassFor(k)) != null) &&
(dir = compareComparables(kc, k, pk)) != 0)
p = (dir < 0) ? pl : pr;
else if ((q = pr.find(h, k, kc)) != null)
return q;
else
p = pl;
} while (p != null);
return null;
}
/**
* Calls find for root node.
*/
final TreeNode<K,V> getTreeNode(int h, Object k) {
return ((parent != null) ? root() : this).find(h, k, null);
}
/**
* Tie-breaking utility for ordering insertions when equal
* hashCodes and non-comparable. We don't require a total
* order, just a consistent insertion rule to maintain
* equivalence across rebalancings. Tie-breaking further than
* necessary simplifies testing a bit.
*/
static int tieBreakOrder(Object a, Object b) {
int d;
if (a == null || b == null ||
(d = a.getClass().getName().
compareTo(b.getClass().getName())) == 0)
d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
-1 : 1);
return d;
}
/**
* Forms tree of the nodes linked from this node.
*/
final void treeify(Node<K,V>[] tab) {
TreeNode<K,V> root = null;
for (TreeNode<K,V> x = this, next; x != null; x = next) {
next = (TreeNode<K,V>)x.next;
x.left = x.right = null;
if (root == null) {
x.parent = null;
x.red = false;
root = x;
}
else {
K k = x.key;
int h = x.hash;
Class<?> kc = null;
for (TreeNode<K,V> p = root;;) {
int dir, ph;
K pk = p.key;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0)
dir = tieBreakOrder(k, pk);
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
x.parent = xp;
if (dir <= 0)
xp.left = x;
else
xp.right = x;
root = balanceInsertion(root, x);
break;
}
}
}
}
moveRootToFront(tab, root);
}
/**
* Returns a list of non-TreeNodes replacing those linked from
* this node.
*/
final Node<K,V> untreeify(HashMap<K,V> map) {
Node<K,V> hd = null, tl = null;
for (Node<K,V> q = this; q != null; q = q.next) {
Node<K,V> p = map.replacementNode(q, null);
if (tl == null)
hd = p;
else
tl.next = p;
tl = p;
}
return hd;
}
/**
* Tree version of putVal.
*/
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
/**
* Removes the given node, that must be present before this call.
* This is messier than typical red-black deletion code because we
* cannot swap the contents of an interior node with a leaf
* successor that is pinned by "next" pointers that are accessible
* independently during traversal. So instead we swap the tree
* linkages. If the current tree appears to have too few nodes,
* the bin is converted back to a plain bin. (The test triggers
* somewhere between 2 and 6 nodes, depending on tree structure).
*/
final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
boolean movable) {
int n;
if (tab == null || (n = tab.length) == 0)
return;
int index = (n - 1) & hash;
TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
if (pred == null)
tab[index] = first = succ;
else
pred.next = succ;
if (succ != null)
succ.prev = pred;
if (first == null)
return;
if (root.parent != null)
root = root.root();
if (root == null
|| (movable
&& (root.right == null
|| (rl = root.left) == null
|| rl.left == null))) {
tab[index] = first.untreeify(map); // too small
return;
}
TreeNode<K,V> p = this, pl = left, pr = right, replacement;
if (pl != null && pr != null) {
TreeNode<K,V> s = pr, sl;
while ((sl = s.left) != null) // find successor
s = sl;
boolean c = s.red; s.red = p.red; p.red = c; // swap colors
TreeNode<K,V> sr = s.right;
TreeNode<K,V> pp = p.parent;
if (s == pr) { // p was s's direct parent
p.parent = s;
s.right = p;
}
else {
TreeNode<K,V> sp = s.parent;
if ((p.parent = sp) != null) {
if (s == sp.left)
sp.left = p;
else
sp.right = p;
}
if ((s.right = pr) != null)
pr.parent = s;
}
p.left = null;
if ((p.right = sr) != null)
sr.parent = p;
if ((s.left = pl) != null)
pl.parent = s;
if ((s.parent = pp) == null)
root = s;
else if (p == pp.left)
pp.left = s;
else
pp.right = s;
if (sr != null)
replacement = sr;
else
replacement = p;
}
else if (pl != null)
replacement = pl;
else if (pr != null)
replacement = pr;
else
replacement = p;
if (replacement != p) {
TreeNode<K,V> pp = replacement.parent = p.parent;
if (pp == null)
root = replacement;
else if (p == pp.left)
pp.left = replacement;
else
pp.right = replacement;
p.left = p.right = p.parent = null;
}
TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
if (replacement == p) { // detach
TreeNode<K,V> pp = p.parent;
p.parent = null;
if (pp != null) {
if (p == pp.left)
pp.left = null;
else if (p == pp.right)
pp.right = null;
}
}
if (movable)
moveRootToFront(tab, r);
}
/**
* Splits nodes in a tree bin into lower and upper tree bins,
* or untreeifies if now too small. Called only from resize;
* see above discussion about split bits and indices.
*
* @param map the map
* @param tab the table for recording bin heads
* @param index the index of the table being split
* @param bit the bit of hash to split on
*/
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
TreeNode<K,V> b = this;
// Relink into lo and hi lists, preserving order
TreeNode<K,V> loHead = null, loTail = null;
TreeNode<K,V> hiHead = null, hiTail = null;
int lc = 0, hc = 0;
for (TreeNode<K,V> e = b, next; e != null; e = next) {
next = (TreeNode<K,V>)e.next;
e.next = null;
if ((e.hash & bit) == 0) {
if ((e.prev = loTail) == null)
loHead = e;
else
loTail.next = e;
loTail = e;
++lc;
}
else {
if ((e.prev = hiTail) == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
++hc;
}
}
if (loHead != null) {
if (lc <= UNTREEIFY_THRESHOLD)
tab[index] = loHead.untreeify(map);
else {
tab[index] = loHead;
if (hiHead != null) // (else is already treeified)
loHead.treeify(tab);
}
}
if (hiHead != null) {
if (hc <= UNTREEIFY_THRESHOLD)
tab[index + bit] = hiHead.untreeify(map);
else {
tab[index + bit] = hiHead;
if (loHead != null)
hiHead.treeify(tab);
}
}
}
/* ------------------------------------------------------------ */
// Red-black tree methods, all adapted from CLR
static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> r, pp, rl;
if (p != null && (r = p.right) != null) {
if ((rl = p.right = r.left) != null)
rl.parent = p;
if ((pp = r.parent = p.parent) == null)
(root = r).red = false;
else if (pp.left == p)
pp.left = r;
else
pp.right = r;
r.left = p;
p.parent = r;
}
return root;
}
static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
TreeNode<K,V> p) {
TreeNode<K,V> l, pp, lr;
if (p != null && (l = p.left) != null) {
if ((lr = p.left = l.right) != null)
lr.parent = p;
if ((pp = l.parent = p.parent) == null)
(root = l).red = false;
else if (pp.right == p)
pp.right = l;
else
pp.left = l;
l.right = p;
p.parent = l;
}
return root;
}
static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
TreeNode<K,V> x) {
x.red = true;
for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (!xp.red || (xpp = xp.parent) == null)
return root;
if (xp == (xppl = xpp.left)) {
if ((xppr = xpp.right) != null && xppr.red) {
xppr.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.right) {
root = rotateLeft(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateRight(root, xpp);
}
}
}
}
else {
if (xppl != null && xppl.red) {
xppl.red = false;
xp.red = false;
xpp.red = true;
x = xpp;
}
else {
if (x == xp.left) {
root = rotateRight(root, x = xp);
xpp = (xp = x.parent) == null ? null : xp.parent;
}
if (xp != null) {
xp.red = false;
if (xpp != null) {
xpp.red = true;
root = rotateLeft(root, xpp);
}
}
}
}
}
}
static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
TreeNode<K,V> x) {
for (TreeNode<K,V> xp, xpl, xpr;;) {
if (x == null || x == root)
return root;
else if ((xp = x.parent) == null) {
x.red = false;
return x;
}
else if (x.red) {
x.red = false;
return root;
}
else if ((xpl = xp.left) == x) {
if ((xpr = xp.right) != null && xpr.red) {
xpr.red = false;
xp.red = true;
root = rotateLeft(root, xp);
xpr = (xp = x.parent) == null ? null : xp.right;
}
if (xpr == null)
x = xp;
else {
TreeNode<K,V> sl = xpr.left, sr = xpr.right;
if ((sr == null || !sr.red) &&
(sl == null || !sl.red)) {
xpr.red = true;
x = xp;
}
else {
if (sr == null || !sr.red) {
if (sl != null)
sl.red = false;
xpr.red = true;
root = rotateRight(root, xpr);
xpr = (xp = x.parent) == null ?
null : xp.right;
}
if (xpr != null) {
xpr.red = (xp == null) ? false : xp.red;
if ((sr = xpr.right) != null)
sr.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateLeft(root, xp);
}
x = root;
}
}
}
else { // symmetric
if (xpl != null && xpl.red) {
xpl.red = false;
xp.red = true;
root = rotateRight(root, xp);
xpl = (xp = x.parent) == null ? null : xp.left;
}
if (xpl == null)
x = xp;
else {
TreeNode<K,V> sl = xpl.left, sr = xpl.right;
if ((sl == null || !sl.red) &&
(sr == null || !sr.red)) {
xpl.red = true;
x = xp;
}
else {
if (sl == null || !sl.red) {
if (sr != null)
sr.red = false;
xpl.red = true;
root = rotateLeft(root, xpl);
xpl = (xp = x.parent) == null ?
null : xp.left;
}
if (xpl != null) {
xpl.red = (xp == null) ? false : xp.red;
if ((sl = xpl.left) != null)
sl.red = false;
}
if (xp != null) {
xp.red = false;
root = rotateRight(root, xp);
}
x = root;
}
}
}
}
}
/**
* Recursive invariant check
*/
static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
tb = t.prev, tn = (TreeNode<K,V>)t.next;
if (tb != null && tb.next != t)
return false;
if (tn != null && tn.prev != t)
return false;
if (tp != null && t != tp.left && t != tp.right)
return false;
if (tl != null && (tl.parent != t || tl.hash > t.hash))
return false;
if (tr != null && (tr.parent != t || tr.hash < t.hash))
return false;
if (t.red && tl != null && tl.red && tr != null && tr.red)
return false;
if (tl != null && !checkInvariants(tl))
return false;
if (tr != null && !checkInvariants(tr))
return false;
return true;
}
}
resize
putVal中的扩容操作
// 当大于阈值时就扩容
if (++size > threshold)
resize();
扩容机制: (阈值即临界值)
- 初始化扩容一次 (无参构造初始化为16, 有参构造为threshold)
- put元素时, table数组长度达到了临界值(无参构造为16 x 0.75 == 12), 则是扩容为原来的两倍 (无参构造: 16 x 2 == 32, 新的临界值为32 x 0.75 == 24)
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table; oldCap = 0
// 2 初始化时, oldTab = table = null,
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold; // HashMap(int initialCapacity)初始化带参数会计算出阈值, HashMap()初始化默认为 0
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY) // DEFAULT_INITIAL_CAPACITY = 16
newThr = oldThr << 1; // newCap newThr 都为原来的两倍
}
// 3 初始化时, oldCap == 0
else if (oldThr > 0) // 3.1 oldThr > 0: HashMap 初始化带参数, HashMap(int initialCapacity)
newCap = oldThr; // 使用阈值为新的容量, initialCapacity 通过 tableSizeFor 计算 阈值---threshold
else { // 3.2 oldThr == 0: HashMap 初始化不带带参数, HashMap()
newCap = DEFAULT_INITIAL_CAPACITY; // 使用默认容量 16
// DEFAULT_LOAD_FACTOR 是为了在多线程情况下 减少出错, 如: size==12时, 同时4个进程put操作.
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); // 新的阈值: 0.75 * 16 即 12
}
// 3.1.1 如果没有使用HashMap()初始化, newThr默认为0, 执行下面代码
if (newThr == 0) {
//loadFactor = DEFAULT_LOAD_FACTOR = 0.75f; newCap = oldThr = threshold
float ft = (float)newCap * loadFactor; // threshold * 0.75
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE); // 一般情况: newThr = ft = threshold * 0.75
}
// HashMap()初始化阈值为12, HashMap(int initialCapacity) 为 threshold * 0.75
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
// 4 分配内存给table: HashMap()的newCap为 16;
// HashMap(int initialCapacity)的newCap = oldThr = 初始化计算出来的 threshold.
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
// 5 初始化时, oldTab 为 null, 不执行
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
// 6 返回新分配的 table
return newTab;
}
putTreeVal
final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
int h, K k, V v) {
Class<?> kc = null;
boolean searched = false;
TreeNode<K,V> root = (parent != null) ? root() : this;
for (TreeNode<K,V> p = root;;) {
int dir, ph; K pk;
if ((ph = p.hash) > h)
dir = -1;
else if (ph < h)
dir = 1;
else if ((pk = p.key) == k || (k != null && k.equals(pk)))
return p;
else if ((kc == null &&
(kc = comparableClassFor(k)) == null) ||
(dir = compareComparables(kc, k, pk)) == 0) {
if (!searched) {
TreeNode<K,V> q, ch;
searched = true;
if (((ch = p.left) != null &&
(q = ch.find(h, k, kc)) != null) ||
((ch = p.right) != null &&
(q = ch.find(h, k, kc)) != null))
return q;
}
dir = tieBreakOrder(k, pk);
}
TreeNode<K,V> xp = p;
if ((p = (dir <= 0) ? p.left : p.right) == null) {
Node<K,V> xpn = xp.next;
TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
if (dir <= 0)
xp.left = x;
else
xp.right = x;
xp.next = x;
x.parent = x.prev = xp;
if (xpn != null)
((TreeNode<K,V>)xpn).prev = x;
moveRootToFront(tab, balanceInsertion(root, x));
return null;
}
}
}
其他的一些源码
// Callbacks to allow LinkedHashMap post-actions
// 主要是留下的一些方法, 方便它的子类去继承实现自己的操作
void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }
void afterNodeRemoval(Node<K,V> p) { }
小结: 以后在深入了解红黑树!
Hashtable
说明;
- 存放的是键值对: 即k-v
Hashtable
的k和v都不能为null, 否则会抛出NullPointerException
Hashtable
的使用方法基本上和HashMap
一样Hashtable
是线程安全的,HashMap
是线程不安全的
public class Hashtable<K,V>
extends Dictionary<K,V>
implements Map<K,V>, Cloneable, java.io.Serializable
构造函数
底层是一个 Entry数组
//Hashtable.Entry private static class Entry<K,V> implements Map.Entry<K,V> { final int hash; final K key; V value; Entry<K,V> next; protected Entry(int hash, K key, V value, Entry<K,V> next) { this.hash = hash; this.key = key; this.value = value; this.next = next; } ...
第一次初始化大小为11(默认), threshold = 8 = 11x0.75
大于阈值8时,第二次扩容为23:
newCapacity = (oldCapacity << 1) + 1
, 此时threshold = 17 = 23x0.75
private transient Entry<?,?>[] table;
private float loadFactor;
private int threshold;
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: "+loadFactor);
if (initialCapacity==0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry<?,?>[initialCapacity];
threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
}
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
}
public Hashtable() {
this(11, 0.75f);
}
put 和 addEntry
public synchronized V put(K key, V value) {
// Make sure the value is not null
if (value == null) {
throw new NullPointerException();
}
// Makes sure the key is not already in the hashtable.
Entry<?,?> tab[] = table;
// 根据key得到hash值
int hash = key.hashCode();
// 根据hash值计算索引
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K,V> entry = (Entry<K,V>)tab[index];
for(; entry != null ; entry = entry.next) {
// hash和key相同时, 覆盖
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
entry.value = value;
return old;
}
}
// 添加 k-v
addEntry(hash, key, value, index);
return null;
}
private transient int count;
// 添加k-v
private void addEntry(int hash, K key, V value, int index) {
modCount++;
Entry<?,?> tab[] = table;
if (count >= threshold) {
// Rehash the table if the threshold is exceeded
rehash();
tab = table;
hash = key.hashCode();
index = (hash & 0x7FFFFFFF) % tab.length;
}
// Creates the new entry.
@SuppressWarnings("unchecked")
Entry<K,V> e = (Entry<K,V>) tab[index];
// new --> table[index] 即头插法
tab[index] = new Entry<>(hash, key, value, e); // Hashtable.Entry的构造函数
count++;
}
扩容机制:
newCapacity = (oldCapacity << 1) + 1
protected void rehash() {
int oldCapacity = table.length; // 11
Entry<?,?>[] oldMap = table;
// overflow-conscious code
int newCapacity = (oldCapacity << 1) + 1; // 11x2 + 1 == 23
if (newCapacity - MAX_ARRAY_SIZE > 0) {
if (oldCapacity == MAX_ARRAY_SIZE)
// Keep running with MAX_ARRAY_SIZE buckets
return;
newCapacity = MAX_ARRAY_SIZE;
}
Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];
modCount++;
threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
table = newMap;
// oldMap拷贝到newMap
for (int i = oldCapacity ; i-- > 0 ;) {
for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {
Entry<K,V> e = old;
old = old.next;
int index = (e.hash & 0x7FFFFFFF) % newCapacity;
e.next = (Entry<K,V>)newMap[index];
newMap[index] = e;
}
}
}
Properties
Properties 继承自Hashtable类并实现了Map接口, 也是一种键值对形式来保存数据, 它的特点和Hashtable类似
Properties 还可用于 从配置文件(.properties文件)中 加载数据到 Properties 类对象, 并进行读取和修改.
参考文章: Java中Properties类的操作
class Properties extends Hashtable<Object,Object> {
private static final long serialVersionUID = 4112578634029874840L;
protected Properties defaults;
public Properties() {
this(null);
}
public Properties(Properties defaults) {
this.defaults = defaults;
}
public synchronized Object setProperty(String key, String value) {
return put(key, value);
}
// ...
public String getProperty(String key) {
Object oval = super.get(key);
String sval = (oval instanceof String) ? (String)oval : null;
return ((sval == null) && (defaults != null)) ? defaults.getProperty(key) : sval;
}
// ...
}
TreeMap
说明: 无参构造是无序的; 有参构造可以指定排序规则.
public class TreeMap<K,V>
extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, java.io.Serializable
构造函数: 可以通过comparator指定排序规则
public TreeMap() {
comparator = null;
}
// 初始化时可以指定排序方法
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
}
总结:
如何选择哪种集合?
转载请注明来源,欢迎对文章中的引用来源进行考证,欢迎指出任何有错误或不够清晰的表达。可以在下面评论区评论,也可以邮件至 jungle8884@163.com